3492

The S_{N} Mechanism in Aromatic Compounds. Part XXIX.¹ **655**. Some para-Substituted Chlorobenzenes.

By J. MILLER and WAN KAI-YAN.

Measurements of the rate of methanolysis of four para-substituted chlorobenzenes (p-Cl, p-CF₃, p-Ac, p-NO₂) have been made. By use of the Hammett equation the rates and Arrhenius parameters for methanolysis of chlorobenzene have been estimated; direct measurement is unsatisfactory since reaction is very slow; the rate constant may be estimated, even at the critical temperature of methanol (232°), as only 6.55×10^{-7} l. mole⁻¹ sec.⁻¹.

By relation to fluorobenzene, a high F/Cl rate replacement ratio is found, typical of aromatic S_N reactions with first-row nucleophiles in protic solvents.

CHLOROBENZENE reacts very slowly with methoxide in methanol even near the critical temperature (232°),² and direct measurements are unsatisfactory except perhaps when radioactive tracers are used. The rate constant is, however, required, for example, for discussions of relative reactivity 4 of fluoro- 5,6 and other halogeno-benzenes, and in gauging the effects of replacing carbon atoms of a benzene ring by heteroatoms. In view

- ² Golik and Ravikovich, Dopovidi Akad. Nauk Ükrain. R.S.R., 1950, 101.
- Liveris and Miller, Chem. and Ind., 1957, 954.
 Beckwith, Miller, and (in part) Leahy, J., 1952, 3552 and subsequent papers.
- ⁵ Bevan and Bye, J., 1954, 3091.
 ⁶ Bolto, Liveris, and Miller, J., 1956, 750.

¹ Part XXVIII, Liveris and Miller, preceding paper.

[1963]

of the general reliability of the Hammett equation 7-9 in simple unhindered systems, the reaction of a series of compounds (p-Cl·C_sH₄X) with methoxide in absolute methanol has been measured for this purpose and for general information on aromatic $S_{\rm N}$ reactions.

Hammett substituent constants are already known for the substituents chosen and have already been used for aromatic $S_{\rm N}$ reactions with methoxide ion.⁹ From the experimental rate constants and activation energies, rate constants at a number of standard temperatures have been calculated, and at each a Hammett plot has been drawn and extrapolated to $\sigma^* = 0$. From these values at the different temperatures, values of E_{act} and $\log_{10} B$ have been estimated for methanolysis of chlorobenzene.

EXPERIMENTAL

Materials.—p-Chlorobenzotrifluoride. The commercial product, purified by distillation, had b. p. 138°/750 mm. (lit.,¹⁰ 139.8°/770.5 mm.).

4-Chloroacetophenone. Prepared from chlorobenzene by the Friedel-Crafts reaction as described by Noller and Adams,¹¹ this had m. p. 20.5° (lit.,¹¹ 20-21°)

FIG. 1. Hammett plot for methanolysis of 4-substituted chlorobenzenes at 50°. 1, Cl. 2, CF₃. 3, Ac. 4, NO₂.

FIG. 2. Activation energy plot for chlorobenzene $(k_2$ values from Hammett plots).

p-Dichlorobenzene. The commercial product was purified by sublimation at reduced pressure and had m. p. 53° (lit., 53°,12 54° 13).

Products.—All are known compounds.

Kinetic Procedure.--Runs were carried out with equimolar concentrations of chloro-compound and sodium methoxide in absolute methanol. Rate constants (k_2) were obtained by graphical plots after estimation of chloride ion potentiometrically in aliquot parts quenched in an excess of dilute chloride-free nitric acid. The values of activation energy (E_{act}) were determined from plots of $\log_{10} k_2$ against the reciprocal of temperature, and from them the values of $\log_{10} B$ and S_{act} were computed. Estimated errors based on reproducibility of rates to $\pm 2\%$ are $E_{act} \pm 0.5$ kcal. mole⁻¹, $\log_{10} B \pm 0.4$, $S_{act} \pm 1.3$ e.u. Oil-bath or aluminium-block thermostats were used and runs carried out in bomb tubes of the type described by Daly and Miller.¹⁴ Values of rates for p-chloronitrobenzene are taken from Miller's results.¹⁵ The Hammett plot at 50° is shown as Fig. 1. The E_{act} plot for chlorobenzene is shown as Fig. 2.

- ⁸ Jaffe, Chem. Rev., 1953, 53, 191.
 ⁹ Miller, Austral. J. Chem., 1956, 9, 61.
- Borth, Elsey, and Burchfield, J. Amer. Chem. Soc., 1935, 57, 2066.
 Noller and Adams, J. Amer. Chem. Soc., 1924, 46, 1895.

- ¹² Errera, Phys. Z., 1926, 27, 766.
 ¹³ Sugden, J., 1924, 125, 1167.
 ¹⁴ Daly and Miller, Chem. and Ind., 1961, 826.
 ¹⁵ Miller, J., 1952, 3550.

⁷ Hammett, J. Amer. Chem. Soc., 1937, 59, 96; Trans. Faraday Soc., 1938, 34, 156.

Kinetic data are tabulated. For p-dichlorobenzene, for symmetry reasons, the rate constants were halved in making calculations.

Rate constants and some derived parameters for reaction of sodium methoxide in methanol with p-substituted chlorobenzene.

> k_2 (l. mole⁻¹ sec.⁻¹) at temperatures shown in parenthesis (b) Coloulated at

4-Subst. Cl	(<i>b</i>) Calculated at							
	(a)	Experimental	50°	100°	200°	E_{act}	$\log_{10} B$	$S_{ m act}$
	3.86×10^{-6} (195.4°) 1.00:	$\overline{ \begin{array}{c} 6.95; \ 6.96 imes 10^{-5} \ (203\cdot3^\circ) \end{array} }$	$4.55 imes 10^{-14}$	1·17 ×10 ^{−10}	5·39 ×10 ⁻⁶ *	37·6 ₅	11·8 [11·5] †	-6.70 [-8.07] †
	1.015×10^{-5} (207.6°)							
CF3	$1.36 imes 10^{-5} \ (159.6^\circ)$	$\begin{array}{c} 1.92 \times 10^{-5} & 5.56 \times 10^{-5} \\ (161.8^{\circ}) & (176.7^{\circ}) \\ \end{array}$	$5\cdot 46 imes 10^{-11}$	$3.91 imes 10^{-8}$	$3 \cdot 10 \ imes 10^{-4}$	31 ·5	11·0 ₅	-10.1
	6.60×10^{-5} (178.0°)	$\begin{array}{cccc} 7 \cdot 22 \times 10^{-5} & 1 \cdot 50 \times 10^{-4} \\ (179 \cdot 2^{\circ}) & (189 \cdot 0^{\circ}) \end{array}$	0.00	1.40	F 00	00.0	11.0	0.01
AC	3.18×10^{-4} (159.5°)	3.56×10^{-4} 5.35×10^{-4} (160.8°) (164.9°)	3·22 ×10⁻9	1·43 ×10 ⁻⁶	5·88 ×10 ⁻³	29.2	11.5	-9.21
	(169.0°)	$(173 \cdot 2^{\circ})$ $(175 \cdot 3^{\circ})$						0.44
NO ₂	8.12; 8.68×10^{-5}	2.35×10^{-4} (81.6°)	8·47 ×10-6]	$ 1.28 imes 10^{-3}$	1·21 ×10⁻⁰	24·0 ₅	11.2	9.44
	(71.0°) 1.37 ₅ ;							
	(100.8°)							0.00
н			1.20×10^{-16}	5.01×10^{-13}	$rac{3\cdot 39}{ imes 10^8 fm t}$	39.95	11.1	- 9.90

* For the Hammett plot half these values were used. \dagger Values of $\log_{10} B$ and S_{act} corresponding to half-rate constant values. \ddagger From Hammett plots of the other compounds at these temperatures extrapolated to $\sigma^* = 0$.

DISCUSSION

Aromatic substitutions are very sensitive to substituent effects, particularly for single substituents,^{8,9} and aromatic S_N reactions have been shown to fit the Hammett equation well.⁹ By using σ^* values quoted by Miller ⁹ and measurements reported here, it is simple to compute values of ρ for methanolysis of p-substituted chlorobenzenes and k_2 for chlorobenzene (from $\sigma^* = 0$ for H as substituent) at different temperatures.

In each case it is found the CF_3 point is somewhat off an otherwise reasonably straight line (cf. Fig. 1) obtained from points of the other three compounds. At 50°, for example, $\rho = 8.47$, as compared with $\rho = 7.55$ for monosubstituted fluorobenzenes,⁹ while k_2 is estimated to be 1.20×10^{-16} . Values of k_2 computed by extrapolation at 100°, 150°, 175°, and 200° are 5.01×10^{-13} , 5.01×10^{-10} , 5.25×10^{-9} , and 3.39×10^{-8} , respectively. From the five values a satisfactory $\log_{10} k_2$ -reciprocal temperature plot is obtained, giving $E_{\rm act} = 39.9_5$, and correspondingly $\log_{10} B = 11.1$ and $S_{\rm act} = -7.92$. The values are very satisfactory in relation to the other four compounds. After allowance for symmetry in p-dichlorobenzene by reducing $\log_{10} B$ by 0.3 unit, frequency factors are all within the range 11.0_5 —11.5. Such values are normal for aromatic S_N reactions in unhindered cases and are essentially constant (within experimental error).

In comparison with fluorobenzene the F/Cl rate replacement ratio is similar to that in p-halogenonitro- and 1-halogeno-2,4-dinitro-benzenes, but opposite to that in aliphatic $S_{\rm N}$ reactions. It is clear, therefore, that the transition states for all these aromatic series are similar. The order F > Cl is determined by electronegativity ¹⁵⁻¹⁷ and not bond strength, even in the unsubstituted halogenobenzenes; and as with the common aromatic $S_{\rm N}$ reactions this is taken as indicating that reaction proceeds through an intermediate complex with transition state 1 (bond formation) ¹⁶ rate-determining.

 ¹⁶ Miller, J. Amer. Chem. Soc., 1963, 85, in the press.
 ¹⁷ Bolto and Miller, Austral. J. Chem., 1956, 9, 74, 304; Bolton, Miller, and Parker, Chem. and Ind., 1960, 1026; Parker and Read, J., 1962, 9.

From an attempt at 202.5° to make direct measurements of the methanolysis of chlorobenzene, Liveris and Miller estimated k_2 to be more than 10⁻⁷ but less than 10⁻⁶, and quoted ³ the latter as a very crude estimate, since even that, giving the order F > Cl and a F/Cl rate replacement rate ~100, was in marked contrast with a report by Tronov and Kruger ¹⁸ giving the rate replacement ratio PhF/PhCl as 0.55. It appears that Liveris and Miller's crude estimate was high, the calculated value of k_2 at 202.5° being ~5 × 10⁻⁸

DEPARTMENT OF CHEMISTRY, UNIVERSITY OF HONG KONG, HONG KONG, B.C.C. [Received, December 10th, 1962.]

¹⁸ Tronov and Kruger, J. Russ. Phys. Chem. Soc., 1926, 58, 1270; Chem. Abs., 1927, 21, 3887.